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Abstract. In this paper initial-boundary value problems 
for a linear, and a weakly nonlinear string (or wave) 
equation are considered. One end of the string is 
assumed to be fixed and the other end of the string is 
attached to a spring-mass-dashpot system, where the 
damping generated by the dashpot is assumed to be 
small. This problem can be regarded as a simple 
model describing oscillations of flexible structures 
such as overhead power transmission lines. For a 
linear problem a semigroup approach will be used to  
show the well-posedness of the problem as well as the 
asymptotic validity of formal approximations of the 
solution on long time-scales. It is also shown how a 
multiple time-scales perturbation method as described 
in [1] can be used effectively to construct asymptotic 
approximations of the solution on long timescales. 
 

Introduction 
There are examples of flexible structures such as 

suspension bridges, overhead transmission lines, 
dynamically loaded helical springs that are subjected 
to oscillations due to different causes, such as 
windflows or earthquakes. In some cases, the so-
resulted oscillations may cause undesirable behaviour. 
For instance, in 1940 the Tacoma Narrows Bridge 
collapsed completely because an 18.9 m/s wind - flow 
induced an 0.23 Hz torsional oscillation of the bridge 
deck. More examples of undesirable oscillations are 
the oscillations of the stays of the Erasmus Bridge in 
Rotterdam during stormy and rainy weather. Simple 
models which describe these oscillations can be 
expressed in initial-boundary value problems for wave  
equations like in Keller and Kogelman [2], van 
Horssen [3] or for beam equations like in Castro and 
Zuazua [4], and Boertjens and van Horssen [5]. To 
suppress the oscillations various types of boundary 
damping can be applied such as described in Castro 
and Zuazua [4], Morgul et al. [6].  

In some flexible structures (such as an overhead 
transmission line or a cable of a suspension bridge) 
various types of wind-induced mechanical vibrations 
can occur. Vortex shedding for instance causes usually 
high frequency oscillations with small amplitudes, 
whereas low frequency vibrations with large 
amplitudes can be caused by flow-induced oscillations 
(galloping) of cables on which ice or snow has 
accreted. These vibrations can give rise to material 
fatigue. To suppress these oscillations various types of 
dampers have been applied in practice (see for 
instance Wang et al. [7]. 

In most cases simple, classical boundary 
conditions are applied such as in Boertjens and van 
Horssen [5], Keller and Kogelman [2], van Horssen 

[3] to construct approximations of the oscillations. For 
more complicated, non-classical boundary conditions, 
see for instance in Castro and Zuazua [4], Morgul [6], 
it is usually not possible to construct explicit 
approximations of the oscillations. In this paper we 
will study such an initial-boundary value problem with 
a non-classical boundary condition and we will 
construct explicit asymptotic approximations of the 
solution, which are valid on a long time-scale.  The 
main problem of this paper is to study how efficiently 
these boundary dampers work. The method which can 
be used to investigate these problems are multiple 
timescales methods (as used in Boertjens and van 
Horssen [5], Keller and Kogelman [2], van Horssen 
[3]), Galerkin truncation methods, and combinations 
of these methods. From the asymptotic point of view it 
is also interesting to study the convergence properties 
of the applied perturbation methods for these types of 
initial - boundary value problems. We will consider a 
string which is fixed at  and attached to a 
spring-mass-dashpot system at 

0=x
π=x .  

To derive a model for flexible structures such as 
suspension bridges or overhead transmission lines we 
refer to van Horssen [3] and Boertjens and van 
Horssen [5]. It is assumed that l (the length of the 
string), ρ (the mass-density of the string),  T  (the 
tension in the string), m~  (the mass in the spring-mass-
dashpot system), γ~ (the stiffness of the spring), and 
α~ , β  (the damping coefficients of the dashpot), 

(for instance, the stiffness of the stays of the 
bridge) are all positive constants. Furthermore, we 
only consider the vertical displacement 

2p

)~,(~ txu  of 
the string, where  is the place along the string, and x
t~  is time. After applying a simple rescaling in time 

and in displacement ,/~ tTt ρ=  

);,()~,(~ txutxu =  putting ,~ mm ρ=  T.~ γγ = , 

and αρα T=~  we obtain as a simple model for the  
oscillations of the string the following initial-boundary 
value problem  
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where ε  is a small parameter with 10 <<< ε  and 
where the function is an external force (for instance 
a wind force).  The functions 

f
φ  and ψ represent the 

initial displacement of the string and the initial 
velocity of the string respectively. Different cases are 
considered for , , f m γ , α  and β . In this paper 
we will consider the following four cases, 
namely;
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For the first case and third case a semigroup 
approach, as described in Goldstein [8], can be used to 
show the well-posedness of the problem for suitable 
initial conditions as well as to prove the asymptotic 
validity of formal approximations of the solution on 
long time-scales. To construct an approximation of the 
solution of the problem a perturbation technique will 
be used. The first, second, and fourth case are 
regularly perturbed problems, whereas the third case is 
a singularly perturbed problem. In this paper we will 
present the results as obtained so far. For details we 
refer to our papers [9,10,11]. 
 

Methods. 
In the applied perturbation scheme it is assumed 

that the solution of the problem can be expanded in a 
power series in ε . If a naive expansion is used, that 
is, if it is assumed that the solution can be written as 

,),(),();,( 10 L++= txutxutxu εε  

it may turn out that , and so on, may 

contain terms growing  in 
210 ,, uuu

tttx εεε ,,, , or . 
Of course, the approximation is still valid for very 
small values of t and x. But it is not valid anymore for 
large values of t and x. These terms are the so-called 
secular terms. To avoid the error caused by these 
secular terms it is convenient  to scale the time 
variable t and the space variable x by introducing new 
variables 

t2ε

εxx = , εtt = , tετ = , , and 
so on. To remove secular terms occurring in 

 and so on it is assumed that the 

approximation of   is a function of 

t2εµ =

210 ,, uuu
u τ,,,, ttxx  

and µ , and so on. Then u is expanded in a power 
series in ε , that is, 
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This method is called the method of multiple scales. 
 

Results. 
For the first case, using  a semigroup approach it 

can be proved that the problem is wellposed for 
10 << x  and for . Although the problem is 

linear the construction of these approximations is far 
from being elementary because of the complicated, 
non-classical boundary condition. Using some kind of 
balancing procedure we solve the linear wave equation 
and construct approximations. In fact, the procedure is 
an extension of the classical way to solve a linear 
wave equation using the method of separation of 
variables. We observe that although the problem we 
consider is homogeneous, the technique used to 
approximate the solution can be applied to 
nonhomogeneous problems as well. To construct a 
formal approximation the scallings which are needed 
are , and 

0≥t

tx, τ . It has been shown that this type of 
boundary damper makes the zero solution stable but 
not uniform. It has also been shown that the 
approximation is an asymptotic one on a time - scale 
of order . 1−ε

For the second case, to construct a formal 
asymptotic approximations of the exact solution we 
use a two-timescales perturbation method, that is, it is  
assumed that the approximation is a function of  
and 

tx,
tετ = . The formal asymptotic approximation is 

expressed in the form of an infinite series.  It has been 
shown that for all values of  mode-
interactions only occur between modes with non-zero 
initial energy up to 

02 >p

)(εO . This implies that 
truncation is allowed to those modes that have non-
zero initial energy up to )(εO . For the damping 

parameter 2πα ≥  it has been shown that all 
solutions tend (up to )(εO ) to zero as ∞→t . For 

20 πα <<  it can be shown that  the string system 
usually will oscillate in only one mode (up to )(εO ) 
as ∞→t . This indicates that the applied damper at 
the boundary is an efficient one. 

For the third case, the presence of the term  in 
the boundary condition at 

xtu
π=x  will give rise to a 

singularly perturbed problem. In fact a characteristic 
layer near π=x  will play an important role in the 
construction of an approximation of the exact solution.  
To construct formal approximations of the solution the 
method of multiple scales  will be used.  It is clear 
from the boundary condition at π=x  that the 
tangent of the initial displacement of string near 

π=x  is of order )(εO . It is, however, not clear 
what scalings are to be needed to approximate the 



solution of the problem. But for 0=α  the exact 
solution can be determined. We observe that for 

0=α  the solution consists of two parts. The first 
part of the solution only plays a significant role (in the 

-plane) in an order ),( tx ε  neighborhood of π=x . 
The second part of the solution in fact describes the 
vibrations of a string with a Dirichlet boundary 
condition at  and a Neumann boundary 
condition at 

0=x
π=x . It is clear from this solution that 

the scallings we need to construct an approximation 
solution are: txxx ,, ε= , and εtt = . Based 
upon the results obtained from the first case, the case 
2, and the case 3 of this paper it is most likely that for 

0≠α  we need additional scalings 
. It follows from the exact 

solution  of the initial-boundary value problem with 
L,, 2tt εµετ ==

0=α  that in order to describe the characteristic 
layer correctly we have to construct an approximation 
at least up to order . For that reason for this case a 
secular free approximation will be constructed up to 
order , that is, 

2ε

2ε 2
2

10 uuuu εε ++= . It has been 
shown that the zero solution is uniformly stable. So, it 
will be effective to use such a boundary damper to 
damp the oscillations of the string. 

For the last case, the problem can be regarded as a 
simple model of the galloping oscillations of overhead 
power transmission lines in a windfield. For this 
problem the truncation method can not be applied. 
Instead of  the Fourier-series method we can use the 
method of characteristic coordinates (in combination 
with a multiple-timescales perturbation method). 
Again it can be shown that for 2πα ≥  all solutions 
will tend to zero (up to )(εO ) as ∞→t . For 

20 πα <<  it can be shown that the solution will 
tend to a standing triangular wave as  (with a 
vanishing amplitude as 

∞→t
α  tends to 2π . The 

calculations for this problem are more complicated 
then the ones presented for the second case.  
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