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Abstract: In this paper an initial-boundary value problem for a homogeneous string (or wave)
equation is considered. One end of the string is assumed to be fixed and the other end of the string is
attached to a spring-mass-dashpot system, where the damping generated by the dashpot is assumed
to be small. This problem can be regarded as a simple model describing oscillations of flexible
structures such as overhead power transmission lines. A semigroup approach will be used to show
the well-posedness of the problem as well as the asymptotic validity of formal approximations of the
solution on long time-scales. A multiple time-scales perturbation method will be used to construct
asymptotic approximations of the solution. Although the problem is linear the construction of these
approximations is far from being elementary because of the complicated, non-classical boundary
condition.
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1. INTRODUCTION

There are examples of flexible structures such as suspension bridges, overhead transmission
lines, dynamically loaded helical springs that are subjected to oscillations due to different
causes. Simple models which describe these oscillations can be expressed in initial-boundary
value problems for wave equations (like in Krol,1989; Durant,1960; van Horssen,1988; Cox
and Zuazua,1995; Rao,1993) or for beam equations (like in Boertjens and van Horssen, 2000;
Conrad and Morgiil, 1998; Rao,1995).

In most cases simple, classical boundary conditions are applied ( such as in Boertjens
and van Horssen,2000; van Horssen,1988) to construct approximations of the oscillations.
For more complicated, non-classical boundary conditions ( see for instance Durant,1960;
Morgiil et al.,;1994; Castro and Zuazua,1998; Cox and Zuazua,1995; Rao0,1993; Rao,1995)
it is usually not possible to construct explicit approximations of the oscillations. In this
paper we will study such an initial-boundary value problem with a non-classical boundary
condition and we will construct explicit asymptotic approximations of the solution, which
are valid on a long time-scale. We will consider a string which is fixed at x = 0 and attached
to a spring-mass-dashpot system at z = 1 (see also figure).
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Fig. A simple model of a string fixed at x = 0 and attached to a spring-mass-dashpot system at
z =1

It is assumed that p (the mass-density of the string), T' (the tension in the string), 7
(the mass in the spring-mass-dashpot system), 4 (the stiffness of the spring), and € (the
damping coefficient of the dashpot with 0 < € < 1) are all positive constants. Furthermore,
we only consider the vertical displacement @(x,%) of the string, where x is the place along
the string, and # is time. Gravity and other external forces are neglected.

After applying a simple rescaling in time and in displacement (£ = ,/ %t, Wz, t) = u(z,t);

putting m = p.m, ¥ = v.T, and € = /T pe ) we obtain as a simple model for the oscillations
of the string the following initial-boundary value problem

U —Ugy = 0, 0<z <1, t>0, (1)

w(0,t) = 0, t>0, 2)

mu(1,t) + yu(l,t) +uz(1,t) = —euwr(1,t), t >0, (3)
u(z,0) = ¢z), 0<z <1, (4)

u(z,0) = YP(z), 0<z <1, (5)

where m and -~y are positive constants, and where € is a small parameter with 0 < ¢ < 1. The
functions ¢ and v represent the initial displacement of the string and the initial velocity of
the string respectively. The term u;(1,t) in boundary condition (3) represents the force by
the string acting on the mass.

In this paper we will prove the well-posedness of the initial-boundary value problem (1)
- (5), and we will construct explicit, asymptotic approximations of the solution up to order €
on a time-scale of order e~! . This paper is organized as follows. In section 2 we first study
the undamped initial - boundary value problem (1) - (5) with € = 0. In section 3 of this
paper a boundedness property of the solution is discussed. By using a semigroup approach
we show in section 4 that for 0 < € < 1 the problem (1) - (5) is well-posed for all ¢ > 0. In
section 5 a formal approximation of the solution of (1) - (5) is constructed using a multiple
timescales perturbation method. The asymptotic validity of this formal approximation will
be proved in section 6 on a time-scale of order e~!. Finally in section 7 some remarks will
be made and some conclusions will be drawn.
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2. THE UNDAMPED PROBLEM (1) - (5) WITH ¢ =0

In this section the method of separation of variables will be used to solve problem (1) - (5)
with € = 0, that is,

Uy — Uz = 0, 0<z <1, t>0, (6)

w(0,t) = 0, t>0, (7)

mug(1,t) + yu(l,t) +uz(1,¢) = 0, t>0, (8)
u(z,0) = ¢x), 0<z <1, (9)

ug(z,0) = Y(z), 0<z < 1. (10)

The solution of this problem will play an important role in section 5. We now look for
a nontrivial solution of the PDE (6) and the BCs (7) - (8) in the form X (z)T'(t). By
substituting this form into (6) - (8) we obtain a boundary value problem for X (z) :

~X"() = AX(), (1)
X(0) = o, (12)
X'1) = (mA-7)X(), (13)

and the following problem for T'(¢) :
=T"(t) = X\T'(t). (14)

It can be shown elementarily that the eigenvalue problem (11) - (13) has infinitely many,
isolated, real-valued, and positive eigenvalues. We will omit the elementary proofs and we
refer the reader to (Strauss,1992) for similar proofs. The eigenvalues are the roots of

mA —
VA

We denote these roots by \,, and it can be deduced from (15) that (n — 1) < /A, < n,
n=1,2,3,---. From (11) - (13) and (15) the eigenfunctions X,,(x) can now be determined,
yielding X,,(z) = A, sin(v/A,z), where 4,, is a constant. It can also be shown elementarily
that two different eigenfunctions belonging to two different eigenvalues are orthogonal with
respect to the inner product as defined by

cot(VA) = (15)

< Wi(z), Wa(z) >= /0 [1 +md(z — 1)] Wi (z)Wy(z)dx, (16)

where 6(x—1) = 0 for z # 1 and fol d0(x—1)dz = 1. From (14) T,,(¢) can now be determined
for each A,, and so inifinitely many nontrivial solutions of the PDE(6) and BCs (7) - (8)
have been determined in the form X, (z)T,(t). Using the superposition principle, the inner
product (16), and the initial values (9) - (10) we finally obtain the solution of the undamped
problem (6) - (10), yielding

u(et) =Y (An sin(v/Ant) + By cowm)) sin(v/Anz), (17)

n=1
where . .
o _ ol +méa — i) sin(yAr)da )
Jo[L+mé(z — 1)]sin’(VAz)de
and
B, - 1 fo 1+ md(z —1)]|d(z )sin(\/xm)d:c. (19)

Van fo [1+md(z — 1)]sin® (VA z)dz
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3. THE ENERGY AND THE BOUNDEDNESS OF SO-
LUTIONS.

The energy of the string with the mass-spring system is defined to be
1, L L5 L o
E(t) = §ut (.Z',t) + Euz(xat) dz + §mut(17t) + 5’7“ (1>t)' (20)
0

It should be observed that the energy consists of the kinetic and the potential energies of the
string and the mass-spring system. Elementarily it can be shown that Cfi—]f = —eu?(1,t) <O0.
So, E(t) < E(0) for all ¢ > 0. By using the Cauchy-Schwarz inequality it then follows that

/ " (s, )ds| < ] / 25, )ds < /2B < /2F(0).
0 0

And so, u(z,t) is bounded if the initial energy is bounded.

lu(z,t)] =

4. WELL-POSEDNESS OF THE PROBLEM (1) - (5)

In this section we will show that the initial - boundary value problem (1) - (5) with 0 < e < 1
is well-posed for all ¢ > 0. To show the well - posedness we will use a semigroup approach.
For that reason we introduce the following auxiliary functions defined as follows:

a(t) =u(e, t), b(t) =ui(e, t), and n(t) = mu(1,t). (21)

For simplicity, we denote a, b, n for a(t), b(t), n(t), respectively. Differentiating these
functions with respect to ¢ we obtain

b
ag a
( ; ) _ . | )
e —(va(l) +az(1) + in)
Next, we also define some function spaces, i.e: V := {a € H'[o,1], a(0) = o}, and H :=

{y(t) = (a,b,n) € VxL?[o,1] x R}. Now we equip the space H with the inner product (-, -) :
H x H — R defined by

W)= [ (@ + Mo +ya(1a(D) + (23)

where y = (a,b,n) and § = (&, b, 7j) are in H. Observe that this inner product is based upon
the energy of the string (see also (20)). For that reason we call the space the energy space
‘H. The energy space H together with the inner product (-, -) is a Hilbert space.

Next, we define the unbounded operator A : D(A) C H — H by

b
Ay(t) = , y € D(A), (24)
— (va(l) +a,(1) + in)

where D(A) = {y(t) = (a,b,n) € (H*[0,1]NV) x V x R; n=mb(1)}. Using (24) it then
follows that (22) can be rewritten in the form

y = Ay, (25)

y(0) = 9, (26)
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dy(t 4
where ¢ = %, and ® := P .
n(0)

Theorem 1 Operator A : D(A) C H — H defined by (24) generates a C, semigroup of
contractions T(t) on the energy space H.

Proof

According to the Lumer-Phillips Theorem, see Goldstein (1985) page 26, it is sufficient to
show that A is a m-dissipative operator. First, take any y = (a,b,n) € D(A) and then a
straightforward computation gives (Ay,y) = —#nQ < 0. So it follows that the operator A
is dissipative. Then we have to prove that the system (I — A)y = y, is uniquely solvable for
any given y, = (a,,bo,1,) € H. Observe that (I — A)y = y, is equivalent with

a—b=a,, b—az, = b,, (27)
€
n+7a(1)+az(1)+an = - (28)

Eliminating b from (27) and using 75(t) = mu(1,t) we obtain

a—az; = a, +b, € L*(0,1), (29)
a(0) =0, (m+e+7v)a(l)+az(1) = no+ (e +m)ay(1). (30)

The second order ODE (29) subject to (30) has a unique solution a € H2(0,1) N V. From
(28) the function 7 can be found. By this construction we found that y = (a,b,n) € D(A).
So, the proof of the theorem now follows directly from the Lumer-Phillips Theorem.

If A is a linear operator on H generating the C, semigroup T'(t) and if the function y, is
in D(A) then we can show that T(t)y, is in D(A). Moreover, we have the following lemma
(see Renardy and Rogers (1993) page 398).

Lemma 1 Let A be the infinitesimal generator of the C, semigroup T(t). Then for any
f € D(A) we have T'(t)f € D( ) and the function [0,00) 3t — T'(t)f € H is differentiable.
In fact, FT(t)f = AT(t)f = T(t)Af.

For y, € D(A) we define (a,b,n) = y(t) := T(t)y,. Applying lemma 1 we find that
a € C? (R; L0, 1]) NC(RT; VN H?(0,1)). So y(t) = T(t)y, is a strong solution of (25) -

(26) for all y, € D(A). But for y, € D(A?), applying lemma 1 twice we have
Gt b Qgz
btt = Qgg = b,m ; (31)
—va(l) — ag(1) — =7 r
where r = —yb(1 1)+ Za(l)+ Sa. (1) + (%)2 n. From (31) and the definition of D(A)

we obtain ¢t — a( ) E ct (§R+ H?>NV) and ¢+ azz € V. On the other hand, we also
have t — a(t) € C? (R+,V). Then it follows that

a€C?* (R V)nC (RY; VN H?(0,1)) NC (R H3(0,1)N V). (32)

So from (32), for all y, € D(A42), y(t) = T(t)y,, we have the equivalence between problem
(1) - (5) and problem (25) - (26). So, the following theorem has now been established.

Theorem 2 Let &€ D(A?), then the initial - boundary value problem (1) - (5) and the
initial value problem (25) - (26) are equivalent.
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Next, we will show that the solution of the initial - boundary value problem (1) - (5)
depends continuously on the initial values. Let §(t) satisfy (25) with the initial values

. . ¢ .
§(0) = ® where &= ( v |, (8,¢) € (C*[0,1]NV) x V. Now, we approximate the
7(0)
difference between y(t) and §(t) , as follows; ||y (t) — §(t)l,, < HT(t)(@ — <i>)HH < H<I> — <i>HH
for all ¢ > 0. This means that small differences between the initial values cause small
differences between the solution y(t) and §(¢) for all ¢ > 0. We observe that if we take
o(z) € H3(0,1), ¢(0) = ¢"(0) = 0 and () € H2(0,1) NV then we have ® in the domain
A2, So, we can now formulate the following theorem on the well-posedness of the initial-
boundary value problem (1) - (5).

Theorem 3 Suppose ¢(z) € H3(0,1), ¢(0) = ¢"(0) =0 and ¢(z) € H*(0,1)NV, (0) =0
then problem (1) - (5) has a unique and twice continuously differentiable solution for x €
[0,1] and t > 0. Moreover, this solution depends continuously on the initial values.

5. THE CONSTRUCTION OF A FORMAL APPROXI-
MATION

In this section, an approximation of the solution of the initial-boundary value problem (1)
- (5) will be constructed using a two-timescales perturbation method. If we expand the
solution in a Taylor series with respect to € straightforwardly , that is,

u(z,t) = uo(x,t) + eus(z,t) + us(w,t) + -, (33)

the approximation of the solution of the problem will contain secular terms. From the energy
integral in section 3, we know that the solution is bounded. So, the secular terms should
be avoided. That is why a two-timescales perturbation method (as described in Kevorkian
and Cole, 1981; Nayfeh, 1973) will be applied. Using such a two - timescales perturbation
method the function u(x,t) is supposed to be a function of x, t and 7 = et. For that reason,
we put

u(z,t) = w(z,t,7;¢€). (34)
Using (34) the initial - boundary value problem (1) - (5) becomes

Wit + 2€Wsy + E€Wrr —Wae = 0, 0<z<1,t>0,7>0,
w(0,t,7;€ 0, t>0,7>0,
mwy (1,t,75€) + yw(1, ¢, 7; e) +wz(1,t,7;¢) = —e(we(1,t,7;€) + 2mw(l,t,7;€)r

(35)

) (

( ) )
—2(w,(1,t,1;€) + mw,.(1,t,75€), t>0,7>0, (37)
) (

) (

36)

w(z,0,0;¢) = ¢(x),0<z <1, 38)
wi(z,0,0;€) + ew,(2,0,0;¢) = (x),0<z <1, 39)

with
$(x) € C° (10,1 R), ¥(z) € C* ([0, 1];®), (40)

and
$(0) = ¢"(0) = ¢™(0) = 0, ' (41)
mg" (1) +yp(1) + ¢'(1) = me'™ (1) ++¢"(1) + ¢"' (1) =0, (42)
P(0)=¢"(0) = 0, (43)
(1) =my"(1) +9'(1) = 0. (44)
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Using a two time-scales perturbation method it is usually assumed that not only the solution
u(z,t) will depend on two time-scales but that also u(x,t) = w(z,t,7;€) can be approximated

by the formal expansion
uo(x,t,7) + euyr (z,t,7) + - - -

(45)

It is reasonable to assume this solution form because the PDE and the BCs depend ana-
lytically on e. Substituting (45) into (35) - (39) and after equating the coefficients of like

powers in €, it follows that u, has to satisfy

Uo,, — Uo,, = 0, O0<z<1,t>0,7>0,
ue(0,t,7) = 0, t>0,7>0,
Mg, (1,£,7) + yuo(1,t,7) + uo, (1,£,7) = 0, t>0,7>0,
uo(2,0,0) = ¢(z), 0<z<]1,
Ue, (2,0,0) = ¢(z), 0<z<]l.

The solution of (46) - (50) follows from section 2, yielding

uo(,t,7) = Y (An(T) sin(y/Ant) 4+ Bn (1) cos(\/m)> sin(y/Anz),

where A,,(0) and B, (0) are given by

fo +mé(z — 1)y (z) sin(v/ A, z)dz

Jo 1+ mé(z — 1)] sin?(vApz)dz

1 fo [1+md(z — 1)]¢(x) sin(v/Anz)dx
VAn [I[1+mé(z — 1)]sin?(VA,z)dz
and where ), is given by (15). It follows from (40) - (44) and (15) that

2C 2C,
|4, (0)] < )\5—/12 and |B,(0)| < W;

where C, and C are given by

1
c(,:lgixm{ Lo ysiny/n) = [ 60 @) cos(/ R

3
J

and

Ci= max {\—(W'u)+w'"<1>)sin<F )+ / B (z) sin(y/Az)da

1<n<oco

respectively. The O(e) - problem for u; is given by

U, —Ui,, —2u,,,, 0<2<1,t>0,7>0,
w1 (0,t,7) = 0, t>0,7>0,
muy,, (1,t,7) + yur (1,8, 7) +ur, (1,8, 7) = —2mu,,, (1,t,7) — u,, (1,t,7),
t>0,7>0,
u1(2,0,0) = 0, O0<z<]1,

1t($7070) = —Uo,r(.Z',0,0), 0<z<1.

(54)

(55)



On the weakly damped vibrations of a string 8

To solve (57) - (61) the eigenfunction expansion approach will be used. Making boundary
conditions homogeneous is the usual way to solve initial - boundary value problems when the
inhomogeneous boundary conditions are of classical type (that is, are of Dirichlet, Neumann,
or of Robin type). For the non-classical boundary condition at z = 1 this approach turns
out to be not applicable. When we apply the eigenfunction expansion to solve the initial-
boundary value problem (57) - (61) the left-hand side of (57) at £ = 1 and that of (59) are
of the same form. So, to solve the problem correctly the right-hand side of (57) at z = 1,
and that of (59) should match, that is, should be proportional. To obtain this matching we
introduce the following transformation

ul(wataT) zwg(t,7)+v(x,t,7). (62)

Substituting (62) into (57) - (61) we obtain

Vgt — Vgg = —2Up,, — TG, 0<2<1,t>0,7>0, (63)

v(0,t,7) = 0,t>0,7 >0, (64)

mo (1,8, 7) + (1,8, 7) + v, (L, t,7) = —2mu,,, (1,t,7) — u,, (1,8, 7) — mgu(t,7) (65)
—(y+ Dyg(t,7),t > 0,7 >0,

v(z,0,0) = -—2¢(0,0),0<2z<1, (66)

ve(2,0,0) = —u,, (,0,0) —2g:(0,0),0 < z < 1. (67)

To solve (63) - (67) v(x,t,7) is written in the eigenfunction expansion

v(z,t,T) Zvnthm vV Anx) (68)

Substituting (68) into (63) and (65) and taking the limit for z = 1 we obtain

Z Uy, (6, T) + A (8, 7)) sin (\/ 1) —2uy,, (1,4,7) — g1t (,7) (69)
n=1
and

o0

Z ((mvn" (t,7) + yun(t, 7)) sin(v/An) + VAnvn(t, T) cos \//\_)) = —2mu,, (1,t,1)

n=1

—Uo, (lat; T) - mgtt(ta T) - (7 + 1) g(ta T) (70)

respectively. From (15) it follows that mA, = v + v/, cot (\/)\n), and so m times the
left-hand side of (69) is equal to that of (70). And so, m times the right-hand side of (69)
should be equal to that of (70). It then follows that

1
g(taT) = _muoi(l,tﬂT)‘ (71)
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The initial - boundary value problem (63) - (67) now becomes

Utt — Vzz = _2u0t1-+ — a"uottt(]‘7t77-)7 0<z< ]-7 t> 077- > 07 (72)

7+1
v(0,4,7) = 0,t>0,7>0, (73)
1
mug(1,t,7) + yv(l,t,7) + v (L, t,7) = —2mu,,, (1,t,7) + mﬁu()m(l,t,ﬂ,
t>0,7>0, (74)
1
v(z,0,0) = ;pi)lx, 0<z<m, (75)
¢"(1)
vi(2,0,0) = —u, (x,0,0)+ poare 7% O0<z<m. (76)

It should be observed that if m is equal to zero then the boundary condition at =z = 1
becomes a classical boundary condition. From (74) it can readily be seen that in that case
the boundary condition (59) at £ = 1 becomes an homogeneous one after the transformation
(62). When we expand z in a Fourier series, that is, z = Y - | ¢, sin(v/A,z), where ¢, is
given by

_ fl z[1 + mé(z — 1)]sin(v/ Anz)dz _ 2(y + 1) sin(+v/Ap)
fo +mé(z — 1)]sin?(VApz)de Ao+ (MmAn +9) sin”(v/An)

(77)

the initial - boundary value problem (72) - (76) can now be solved by substituting (68) into
the partial differential equation (72), yielding

Unye + ApUpn = 2\/714' )\3/2sm(\/7 ) sin(v/Ant)
- (2V\B. + )\3/Zsm(\/_ ) cos(v/Ant)

% Z Ag/2 sin(\/2p) (A sin(y/Ap) — By cos(v/Agt))- (78)
pan

Observe that v(z,t,7) now automatically satisfies the boundary conditions at z = 0 and
z = 1. In order to remove secular terms, it now easily follows from (78) that A, and B,
have to satisfy

' Cn ; _

AL+ 5+ 1))\n sin(v/An)An, = 0, (79)
! cn s p—

Bt 5oy sin(vAn)Bn = 0. (80)

The solution of (79) - (80) is given by

An (T) An (0) exp(—anT), (81)
B,(r) = Bu(0)exp(—a,7), (82)
where ay, = 52280l > 0. From (54) and (81) - (82) it follows that the infinite

series representation (51) for u, is twice continuously differentiable with respect to z and ¢,
and infinitely many times with respect to 7. From (15) it follows that v/A, — (n —1)7 as
n — 00. S0, a, tends to 0 as n tends to co. From (81) and (82) it then follows that u, is
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stable but not uniform. From (79) - (80) v,(t,7) in (78) can now be determined, yielding

vn(t,7) = Dp(7) cos(v/Ant) + En(7) sin(y/Ant)

0 3/2
2 ﬁ A:i 3 SV A) (= Ap(7) sin(/pt) + By(7) cos(v/Ant)).

where D, (7) and E,(7) are still arbitrary functions which can be used to avoid secular terms
in ua(z,t,7). From (75) and from (76) it follows that

D,.(0) = —/ [+ md(z — 1)] [;” ]sm (Vo) dz (84)
00 )\3/2
e /A0,
1t ¢"(1) ] ..
VAEO) = /0 [+ md(z — 1)] [’y_'_lm] sin(y/ Az dz (85)

where 3, = [i [1 +md(z — 1)]sin(v/A,z)dz = L [1 + [M] sin? /X ] > 1. Elementar-
ily it can be shown that |D,(0)| < 02 and E,(0) < /\2 , where C» and C3 are constants. The
solution u; (z,t,7) of (57) - (61) now easily follows from (62), (68), (71), and (83), yielding

uy (2, t,7) = i(vn t,7) ) sin(v/Anz), (86)

n=1

where Hy(t,7) = \/Apsin(y/Ap) (Bp(7) sin(/Apt) — Ap(7) cos(y/Apt)), where vy, is given by
(83), Where A »(7) and B,(7) are given by (81) and (82), and where ¢, is given by (77).
It should be observed that u;(x,t,7) still contains infinitely many undetermined functions
D, (1) and E,(7), n = 1,2,3,--- . These functions can be used to avoid secular terms in
the function us(z,t,7). At this moment, however, we are not interested in the higher order
approximations. For that reason we will take D,,(7) = D, (0) and E,, (1) = E,(0). So far we
have constructed a formal approximation @(xz,t) = u,(z,t,7) + euq(x,t,7) of u(x,t), where
uo(x,t,7) and uq(z,t,7) are twice continuously differentiable with respect to x and ¢, and
infinitely many times with respect to 7.

6. ON THE ASYMPTOTIC VALIDITY OF FORMAL
APPROXIMATIONS

In this section, we study the asymptotic validity of formal approximations on 0 < ¢ < L,e~!
and 0 < z < 1, where L, is an e-independent constant. We will show that a formal
approximation of the solution is indeed an asymptotic approximation if the approximation
satisfies the PDE, and the ICs and BCs up to some, specified order in e. In section 5 we
have constructed the function

a(z,t) = uo(z,t,7) + eur (z,t,7). (87)
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This function is a so-called formal approximation of the solution and this function satisfies
the following initial-boundary value problem

Uy — Upy = €F(z,te), 0<a<1,t>0,7>0,88)
a(0,t) = 0, t>0,7>0, (89)
miig(1,t) + vya(1,t) + @, (1,¢) + et (1,t) = €*R(t,75€), t > 0,7 > 0, (90)
u(z,0) = ¢z), 0<z<1, (91)
U(x,0) = (x) + uy, (2,0,0), 0<z < 1, (92)
where
F(z,t;e) = wo,, (z,t,7)+ 2us, (z,t,7) + eur, (,t,7),
R(t, ;) = mu,,_ (1,t,7) + 2muy, (1,£,7) + uo, (1,t,7) +u1,(1,¢,7)

+emuir(1,t,7) + eur - (1,¢,7),

To prove the asymptotic validity of @(z,t,7) we define some auxiliary functions, a(t) =
u(e,t), b(t) = ug(e,t), and 7(t) = mi(1,t). We also denote a, b and 7j for a(t), b(t) and
7(t), respectively. By differentiating these functions with respect to ¢ we obtain

C}t b 0
by | = Oy +e2 | F(e,t;e) |. (93)
Tt —va(1) — ag(1) — =n R(1,t;€)
b
We also define the same operator A as in section 4, i.e. Ay = - ,
(1) ~ e (1) ~ 57
a
where g = | b |. It then follows that (93) can be written as
]
T = ag+e00), (94)
§0) = @, (95)
0 i 0
where ©(t) = | F(e,t;¢) |,and ® = & + €2 u1,(e,0,0)
R(17t; 6) m(ulT(17070))

From the convergence and differentiability properties of the infinite series representations
for u, and u; it follows that © and ® — ® are bounded, that is, there are two constants My
and M such that [|©(t)|l,, < Mo and ||® — ®||,, < €M;. The solution of the initial value
problem (94) - (95) is given by

§(t) = T(£)® + € /0 t T(t — 5)O(s)ds, (96)

where T'(t) is defined as in section 4. For 0 <t < L,e~! and 0 < z < 1, we can now estimate
the difference between y and g
t
ly () = 5(0)ll, = HT(t) (8-8) - [ T(t-90()ds| < eled+LMo). (97
0 H

We can conclude from (97) that y(t) —(t) = O(e) on a timescale of order *. From this it
easily follows that u(z,t) — (uo(z,t,7) + eus (z,t,7)) = O(e) and u(z,t) — uo(z,t,7) = O(e)
on0<t<Ly,e!and0<2z<1. And so we obtained the asymptotic validity of the formal
approximations.
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7. SUMMARY

In this paper an initial - boundary value problem for a weakly damped string has been
considered. It can be shown that (using a semigroup approach) the initial-boundary value
problem (1) - (5) is well-posed for 0 < z < 1 and ¢ > 0. Using an energy integral it can also
be shown that the solution is bounded. The construction of the approximation is far from
being elementary. For instance it is not possible to solve (57) - (61) in the classical way
by making the boundary condition at £ = 1 homogeneous. This is due to the non-classical
boundary condition at z = 1. It can only be done by balancing or matching the right-hand
side of (57) and that of (59) by transforming v in an appropriate way. It also should be noted
that the way to solve the wave equation with a non-classical boundary condition (using the
eigenfunction expansion as we have done in section 5) is an extension of the classical way
to solve such problems. Finally, we proved that the formal approximation is an asymptotic
one on a time-scale of order e~ *.

Although we did not consider external forces (leading to an inhomogeneous PDE) these
problems can be solved in a similar way using the balancing or matching procedure as given
in section 5. Actually by considering (57) - (61) we have solved an inhomogeneous problem.
The results presented in this paper most likely can be extended to weakly nonlinear pdes
with non-classical boundary conditions.

Acknowledgement. The authors thank Professor Ph. P. J. E.Clément for his careful reading
of section 4 of this paper, and for his suggestions to improve this section.
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