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ABsSTRACT. In this paper an initial-boundary value problem for a homogeneous string
(or wave) equation is considered. One end of the string is assumed to be fixed and
the other end of the string is attached to a spring-mass-dashpot system, where the
damping generated by the dashpot is assumed to be small. This problem can be regarded
as a simple model describing oscillations of flexible structures such as overhead power
transmission lines. A multiple time-scales perturbation method will be used to construct
asymptotic approximations of the solution. A semigroup approach will be used to show
the asymptotic validity of formal approximations of the solution on long time-scales.
Although the problem is linear the construction of these approximations is far from
being elementary because of the complicated, non-classical boundary condition.

1. INTRODUCTION

There are a number of examples of flexible structures such as suspension bridges, overhead
transmission lines and dynamically loaded helical springs that are subjected to oscillations
due to different causes. Simple models which describe these oscillations can be expressed
in initial-boundary value problem for wave equations like in [9,11,12] or for beam equations
like in [2,4,5].

In most cases simple, classical boundary conditions are applied ( such as in [5,12]) to
construct approximations of the oscillations. For more complicated, non-classical boundary
conditions ( see for instance [2,9,10,11,]) it seems to be not possible to construct explicit
approximations of the oscillations. In this paper we will study such an initial-boundary
value problem with a non-classical boundary condition and we will construct asymptotic
approximations of the solution, which are valid on a long time-scale. We will consider a
string which is fixed at £ = 0 and attached to a spring-mass-dashpot system at = 1 (see
also figure 1.1).

FI1GURE 1.1. A simple model of a string fixed at z = 0 and attached to a
spring-mass-dashpot system at z = 1.

It is assumed that p (the mass-density of the string), T' (the tension in the string), m (the
mass in the spring-mass-dashpot system), ¥ (the stiffness of the spring), and € (the damping
coefficient of the dashpot with 0 < € < 1) are all positive constants. Furthermore, we only
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consider the vertical displacement @(z, %) of the string, where z is the place along the string,
and £ is time. Gravity and other external forces are neglected.

After applying a simple rescaling in time and in displacement (f = \/ét, iz, 1) = u(x,t);

putting m = p.m, ¥ = v.T, and € = VT'ce ) we obtain as a simple model for the oscillations
of the string the following initial-boundary value problem

(1.1) Uy — Uz, = 0, 0<2<1, t>0,

(1.2) w(0,8) = 0,t>0,

(1.3) muy +yu+u, = —eup, x=1,1t>0,

(1.4) u(z,0) = ¢(z), 0<z<1,

(1.5) u(z,0) = Pz), 0<z <1,

with

(1.6) ¢(z) € C°([0,1;R), o(z) € C*([0,1];R),

(1.7) $(0) = ¢"(0) = ¢™(0) = (0) =¢"(0) = 0

(1.8) me¢"(1) +v¢(1) +¢'(1) = —ey(1),
(1.9) m™ (1) +7¢"(1) +¢"(1) = —ep"(1),
(1.10) my" (1) + (1) +¢'(1) = —ep(l).

where m and -y are positive constants, and where € is a small parameter with 0 < ¢ <« 1. The
functions ¢ and 1) represent the initial displacement of the string and the initial velocity of
the string respectively.

The main goal of this paper is to construct explicit, asymptotic approximations for the
solution of the problem (1.1) - (1.5) up to order € on a time-scale of order e=! . This
paper is organized as follows. In section 2 the proof of the well-posedness of the problem,
using a semigroup approach, will be outlined. In section 3 a formal approximation of the
solution of (1.1) - (1.5) is constructed using a multiple time-scales perturbation method. The
asymptotic validity of this formal approximation will be proved in section 4 on a time-scale
of order e!. Finally in section 5 some remarks will be made and some conclusions will be
drawn.

2. WELL - POSEDNESS OF THE PROBLEM

To prove the well - posedness of the initial - boundary value problem (1.1) - (1.5) a
semigroup approach can be used. Using such a semigroup approach (see also [6,7]) the
problem is reformulated in a spatial space H. The boundary conditions and the pde are
absorbed in the space. The space together with an inner product forms a Hilbert space. For
this problem the inner product has been defined based on the energy of the string, and the
Hilbert space H is called an energy space.

In this Hilbert space we introduce the following auxiliary functions: a(t) = u(e, t), b(t) =
ug(e, t)and n(t) = mu(1,t), and the unbounded operator A : D(A) C H — H defined by

(2.1) y = Ay,
y(0) = @.

where y = (a,b,n) € D(A).

We have shown in [4] that if ¢(z) € H3(0,1), ¢(0) = ¢»(0) =0 and 9 (z) € H*(0,1)NV
then the problem (1.1) - (1.5) has a unique and twice continuously differentiable solution for
z € [0,1] and ¢ > 0, where V := {a € H'[0,1], a(0) = 0}. Moreover, this solution depends
continuously on the initial values. A complete proof can be found in [3].
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3. AN APPROXIMATION OF THE SOLUTION OF THE PROBLEM

In this section, an approximation of (1.1) with boundary conditions (1.2) - (1.3) and initial
conditions (1.4) - (1.5) will be constructed using a two-time-scales perturbation method. If
we expand the solution in a Taylor series with respect to €

(3.1) u(z,t) = uy(z,t) + euy (z,1) + ug(z,t) + € -+ -,

the approximation of the solution of the problem will contain secular terms. However, it
can be proved by using the energy of the string that the solution of the problem is bounded.
So, secular terms should be avoided. That is why a two-time-scales perturbation method
(see also [1,8]) will be used. In using a two - time-scales perturbation method the function
u(z,t) is supposed to be a function of z, t and 7 = et. For that reason, we put

(3.2) u(z,t) = 4z, t,7;€).

Since € is a small parameter it is reasonable to assume that 4, ¢, and 9 have an infinite
series representation of the form

(3.3) a(z,t, 7€)~ uo(x,t,T) + eur(w,t,7) + Eug(x, t,T) + € -
(3.4) px) = Po(x) +epr(x):--,
(3.5) P(z) & to(x) +e€hr(z)--- .

Using (3.2) and removing hats and equating the coefficients of the like powers in € then it
follows that the solution for u, is given by

(3.6) uo(,t,7) = Y (An(f) sin(y/Ant) 4+ Bn (1) cos(\/m)> sin(v/An),
where A, satisfies the relation
(3.7) cot(vVR) = mf/; 7.

The problem for u; should satisfy

(3.8) U1, — U1, —2u,,., 0< <1, t>0,
u1(0,t,7) = 0, t>0,7>0,
(3.9) muy, +yur +u, = —2mu,,, — U, =1,t>0,7>0,
(3.10) u1(z,0,0) = ¢1(z), 0<z<1,
(3.11) ur, (2,0,0) = Y1(x) —uo, (£,0,0), 0<z<1.

To solve (3.8) - (3.11) the eigenfunction expansion approach will be used. Making boundary
conditions homogeneous is the classical way to solve a wave (or a beam) equation using an
eigenfunction expansion. For the non-classical boundary condition at = 1 this classical
approach of making the boundary condition homogeneous can not be applied when we apply
the eigenfunction expansion to solve the initial-boundary value problem (3.8) - (3.11) the
left-hand side of (3.8) for x = 1 and that of (3.9) are of the same form. So, to solve
the problem correctly the right-hand sides of (3.8) for z = 1 and that of (3.9) should be
proportional. For that reason we introduce the following transformation

(3.12) ur(z,t,7) = 2g9(t,7) +v(x,t,7),

and then we expand v into the eigenfunction expansion

(3.13) v(@,t,7) = Y vat,7) sin(v/ An).

After some calculations it follows that

1
(3.14) g(t,T) = —muot(latﬁ)-
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Using the function g given by (3.14) the function v defined by (3.12) satisfies both the partial
differential equation (3.8) and the boundary condition (3.9) automatically.

Remark 3.1. If m = v = 0 then the transformation (3.12) and the classical way of making
boundary conditions homogeneous coincide.

After expanding z into a Fourier series we obtain the differential equations for v,, namely

Uny + Ann = (2V/ARA! + )\3/2 sin(v/An) Ay sin(y/Ant)
2\/_B’ )\3/2 sin(v/An)Bu) cos(v/Ant)

¢ . .
(3.15) +7—:1 Z A§/2 sin(y/Ap)(Ap sin(y/Apt) — B, cos(y/Apt)),
n
where ¢, = —20+Dsin(Vn) In order to remove secular terms, it follows from (3.15)

An+(mAn+7) sin?(vVAn)
that A,, and B,, have to satisfy

' Cn .
a7/ L '\ n An = ’
n+2(7+1)/\ sin(v/An) 0
' Cn : _
(3.16) B, + 3+ D) Apsin(v/An)B, = 0,
now define
. 2
(3.17) ap = Ansin (v A")Z > 0.
An + (M, +7) sin® (v An)
The solution of (3.16) is given by
(3.18) An(r) = An(0)exp(—an,T),
(3.19) B,(r) = Bp(0)exp(—a,7).

From (1.6) - (1.10) and (3.17) - (3.19) it follows that the infinite series representation for u,
is twice continuously differentiable with respect to  and ¢, and infinitely many times with
respect to 7.
Remark 3.2. We know that cot(),,) tends to co as n tends to co. So, it means that «,, tends
to 0 as n tends to co. So, from (3.18) and (3.19) it follows that the solution u, is stable but
not uniform.

Using (3.15) - (3.16) and (3.12) u; can be determined, yielding

uy(z,t,7) = i(vn t,T) 1 Z\/_sm ) sin(y/Apt) =By (7) cos(v/Apt) ) sin(v/Anz).

n=1

It should be remarked that u; still contains infinitely many undetermined functions D,,
and E, of 7 in v,(t,7), n = 1,2,3,---. These functions have to be used to avoid secular
terms in us. However, it is our goal to construct a function u that satisfies the differential
equation, and boundary and initial conditions up to order €2. For that reason, D,, and E,
are taken to be equal to their initial values.

Again from (1.6) - (1.10) it follows that the infinite series representation for u; is twice
continuously differentiable with respect to x and ¢ and infinitely many times with respect
to 7.

4. ON THE ASYMPTOTIC VALIDITY OF FORMAL APPROXIMATIONS

In this section, the asymptotic validity of the formal approximation on the interval 0 <
t < L,e ! and 0 < 2 < 1 is studied briefly. We have constructed the function

(4.1) u(z,t;€) = up(x,t,7) + eur (z,t, 7).
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This function is a so-called formal approximation of the solution and this function satisfies
the following initial-boundary value problem

(4.2) Uy — gy = €F(z,t;€), 0<z<1,t>0,
u(0,t) = 0, t>0,
(4.3) My + Y0+ Uy + €y = € R(x,t;e), z=1,1t>0,
a(z,0) = ¢o(z) +ep1(z), 0<z <1,
(4.4) uy(z,0) = to(z) + ey (2) + €2uy, (2,0,0), 0< z < 1,

By doing the same as in section 2 we can derive an integral representation for u. For
0<t<Ly,e!and0 <z <1, we can estimate the difference between u and % by subtracting
the integral representations for u and @. It can also be shown that the difference is of order
€ on a time-scale of order e!. For detailed calculations and proofs we refers to [3].

5. CONCLUSIONS

In this paper, an initial - boundary value problem for a weakly damped string has been
considered. It can be shown that, using a semigroup approach, the initial -boundary value
problem (1.1) - (1.5) is well-posed for 0 < z < 1 and ¢ > 0. Using the energy integral
we can prove that the solution is bounded. The construction of the approximation is far
from being an easy task. It is not possible to solve (3.8) - (3.11) in the classical way by
making the boundary condition at x = 1 homogeneous. This is due to the non-classical
boundary condition at & = 1. It can only be done by balancing the right-hand side of
(3.8) and that of (3.9) by transforming u in an appropriate way (3.12) . It also should be
noted that the way to solve the wave equation with non-classical boundary condition using
the eigenfunction expansion as we have done in section 3 is an extension of the classical
way (remark 3.1). Finally, we proved that the formal approximation is an asymptotic one
on a time-scale of order ¢ 1. Although we did not consider external forces (leading to an
inhomogeneous PDE) these problems can be solved in a similar way using the balancing
procedure as given in section 3. Actually by considering (3.8) - (3.11) we have solved an
inhomogeneous problem. The results presented in this paper may be extended to weakly
nonlinear pde, and to other non-classical boundary conditions.
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